Updated in 2/21/2011 4:35:48 PM      Viewed: 571 times      (Journal Article)
Chem. Rev. 111 (2): 863–1071 (2011)

Reactions of Hydrosilanes with Transition Metal Complexes and Characterization of the Products

Joyce Y Corey
ABSTRACT
  • 1. Introduction
  • 2. Background
  • 3. Reactions of Hydrosilanes with Transition Metal Complexes
    • 3.1. Types of Ligands at the Metal and Substituents at Silicon
    • 3.2. Ligand Loss
      • 3.2.1. Phosphines
      • 3.2.2. Carbonyl(s) or Carbonyl Units
      • 3.2.3. Olefin or Acetylene
      • 3.2.4. Coordinated Solvent
      • 3.2.5. H2
    • 3.3. Exchange of Anionic Ligands: Preparation from TM−R, TM−H, and TM−Si
      • 3.3.1. TM−R Precursors
      • 3.3.2. TM−H Precursors
      • 3.3.3. TM−Si Precursors
    • 3.4. Addition of Silanes to Metals and to Low-Valent Metal Complexes
    • 3.5. Reactions of Polynuclear Metal Complexes with Silanes
    • 3.6. Miscellaneous Methods
      • 3.6.1. Reactions Providing Polynuclear Metal Complexes from Mononuclear Systems
      • 3.6.2. Formation of Silylene Complexes
      • 3.6.3. Reactions of Silanes and Other Substrates with [TM]═X
      • 3.6.4. Reactions at Silyl Substituents
    • 3.7. Transfer of Hydride from Si to TM
    • 3.8. Summary
  • 4. Solid-State Structures
  • 5. Nonclassical Interactions
    • 5.1. General Comments on X-ray Data
    • 5.2. General Comments for NMR and IR Data
    • 5.3. Categories of Nonclassical Interactions and Selected Examples
      • 5.3.1. Tautomeric Equilibrium between η2-Silane and OA.(21b)
      • 5.3.2. Tp(PPh3)Ru′′H2SiR3′′ [Tp = hydridotris(pyrazolyl)borate]: Ru(η2-H2) or Ru(η2-H-Si)?(48a)
      • 5.3.3. [Cp(Me3P)2Ru(η2-H−SiCl3)]+[BArf4], Ru−H, or η2-H−Si and the Role of the 2J(SiH) Coupling Constant(182)
      • 5.3.4. Cp*(dmpe)Mo(H)(SiR2), (R = Et, 2-10): What Is the Role of the Hydride?(36)
      • 5.3.5. [RuH2{η2-HSiMe2)2X}(PCy3)2] (X = C6H4, 3-127)(208, 209) and RuH3(SiMeCl2)(PPh3)3, 3-124(206): Interpreting Longer-Range Ru−H···Si Interactions
      • 5.3.6. Cp2Nb(H)(SiMe2H)(SiMe2Cl): IHI, Another Interpretation of Long-Range Interactions, The Role of Calculations, and Persistence of Interactions in Solution(356a)
    • 5.4. Complexes with Si−H···TM Interactions
      • 5.4.1. σ-Complexes
      • 5.4.2. α-, β-, and Other Long-Range Agostic Interactions
    • 5.5. M−H···Si Interactions
      • 5.5.1. IHI Interactions
      • 5.5.2. SISHA Interactions
      • 5.5.3. Hydrides That Span Metal−Silicon Multiple Bonds
    • 5.6. Miscellaneous Examples and Unclassified Cases
      • 5.6.1. Additional SISHA Examples
      • 5.6.2. SiH4 and Matoms
      • 5.6.3. Unclassified Complexes
    • 5.7. Summary
  • 6. Solution Processes Determined from NMR Data
    • 6.1. Monometallic Hydride Complexes
      • 6.1.1. Hb−[TM]−SiHa(term) Ha−[TM]−SiHb(term) and Related Intramolecular RE in H−[TM]−SiR3 Cases (Intramolecular Processes)
      • 6.1.2. Ha[TM](σ-Hb−Si) Hb[TM]M(σ-Ha−Si)
      • 6.1.3. H[TM]SiH< [TM] + H2Si<
      • 6.1.4. Ha[TM]Hb or [TM]HaHbSi Exchange
      • 6.1.5. [TM]−σ-Ha−Si−Hb(term) [TM]−σ-Hb−Si−Ha(term) or Two Diastereotopic SiH(term)
      • 6.1.6. H−[TM]−Si Si−[TM]−H
    • 6.2. Bimetallic Metal Hydride Complexes
      • 6.2.1. Si−Hterm and Si−Hbr−M Exchange
      • 6.2.2. M−Hterm and Si−Hbr−M exchange
      • 6.2.3. Si−Hbr−M and M−Hbr−M Exchange
      • 6.2.4. Exchange of M−(Hbr)2−M
    • 6.3. Miscellaneous Processes
      • 6.3.1. Exchange of a Classical Silyl Ligand with Added Silane
      • 6.3.2. Exchange through M═Si Intermediates
      • 6.3.3. Hindered M−Si Rotation
      • 6.3.4. Isomerization in Square-Planar Complexes
      • 6.3.5. Isomerization in 5- and 6-Coordinate Geometries
  • 7. Bonding and Calculations
    • 7.1. σ-Complexes: Comparison of H2 and HSi
    • 7.2. Long-Range Bonding Interactions
    • 7.3. Theoretical Calculations: Specific Cases
      • 7.3.1. Ti Triad
      • 7.3.2. V Triad
      • 7.3.3. Cr Triad
      • 7.3.4. Mn Triad
      • 7.3.5. Fe Triad
      • 7.3.6. Cobalt Triad
      • 7.3.7. Nickel Triad
      • 7.3.8. Cu
  • 8. Oxidative Addition Reactions of Other Si−X Bonds
    • 8.1. Lanthanides/Actinides
      • 8.1.1. Silyl Complexes of Lanthanides/Actinides
      • 8.1.2. Reactions That Involve Transfer of Hydride from Hydrosilanes
      • 8.1.3. Complexes with β−H···Si interactions
      • 8.1.4. Theoretical Calculations
    • 8.2. Oxidative Additions of Other Si−El Bonds
      • 8.2.1. Si−Si Bonds
      • 8.2.2. Si−C bonds
      • 8.2.3. Si−El (El = Sn, B, S)
      • 8.2.4. SiX (X = Halogen)
  • 9. Conclusion
DOI: 10.1021/cr900359c